First Technical meeting on Human Settlements Indicators for SDGs Naivasha, Kenya from 13 to 17 February 2017

Techniques for measuring Street Connectivity

Manuel Madrid gvSIG Association mmadrid@gvsig.com

Introduction

- Well connected street network
 - Many short links / numerous intersections.
 - Few cul-de-sacs.
 - Balance between the street network length and the streets width.

Benefits

- Encourages walking and cycling
- Better infrastructures and public services
- More efficient public transport
- Less use of individual transport
- Less traffic jams
- Less pollution
- More livable cities

Introduction

- Some connectivity Indicators
 - Land Allocated to Streets (%)
 - Street Density (Km/Km2)
 - Intersection Density (#int/Km2)
 - Average Block Size (Hec)
 - Walkability Ratio

Introduction

Street Connectivity benchmark
 (CPI Methodological Guide)

Land Allocated to Streets:

36%

- Street Density (Km/Km2):

20 Km/Km2

Intersection Density (#int/Km2):

100 int/Km2

Methodology

- 1. Delimitation of the Built-up Area ¹
- 2. Sampling ²
- 3. Calculation of aggregated metrics ²
- 4. Assessment of the degree of confidence ²
- 5. Calculation of disaggregated metrics and aggregated metrics excluding Open Space

¹Based on the methodology used in Angel et al., Atlas of Urban Expansion, Lincoln Institute of Land Policy, 2012.

² Based on the methodology used in Angel et al., Atlas of Urban Expansion—2016 Edition, Volume 2: Block and Roads, New York: New York University, Nairobi: UN-Habitat, and Cambridge, MA: Lincoln Institute of Land Policy, 2016.

- Definition of "city footprint" given in "Atlas of Urban Expansion" (Angel et al., Lincoln Institute of Land Policy, 2012): The total area occupied by the built-up area of the city and its urbanized open space
 - Built-up areas
 - Urban
 - Suburban
 - Rural
 - Urbanized Open Spaces
 - Fringe open space
 - Captured open space

2. Sampling

- Halton sequence (quasi-random set of points)
- 10 Hectares circles

- Digitization of block boundaries
 - Block space vs Street Space
 - Street Space:
 - Main purpose (current or potential) is mobility
 - Public Right of Way
 - It includes:
 - Carriage ways
 - One car park line on each side if the road
 - Sidewalks
 - Bike paths
 - Traffic islands
 - Median strips and green areas in the center of boulevards
 - Tram ways

Digitization of block boundaries

Digitization of block boundaries

Digitization of street medians

Digitization of street medians

Formulas

Land Allocated to Streets	$LAS_{agg} = 100 \left(1 - \frac{Blocks Total Area}{Locales Total Area}\right)$
Street Density	$SD_{agg} = \frac{Streets\ Total\ Length \cdot 1E-3}{Locales\ Total\ Area \cdot 1E-6}$
Intersection Density	$ID_{agg} = \frac{Total\ Number\ of\ Intersections}{Locales\ Total\ Area\cdot 1E-6}$

4. Assessment of the degree of confidence

5. Calculation of disaggregated metrics and aggregated metrics excluding Open Space

- Variables
 - Land Use
 - Open Space
 - Non-Residential
 - Residential
 - Atomistic / organic (not laid-out)
 - Informal
 - Formal
 - Housing Project
 - Plot coverage
 - High
 - Medium
 - Low

- 5. Calculation of disaggregated metrics and aggregated metrics excluding Open Space
- Digitization of dividing lines

5. Calculation of disaggregated metrics and aggregated metrics excluding Open Space

Formulas

Land Allocated to Streets	$LAS_{disagg} = 100 \left(1 - \frac{Blocks Total \ Area \ in \ the \ category}{Dividings \ Total \ Area \ in \ the \ category}\right)$
Street Density	$SD_{disagg} = \frac{Streets\ Total\ Length\ in\ the\ category\cdot(\frac{1}{2})\cdot 1E-3}{Dividings\ Total\ Area\ in\ the\ category\cdot 1E-6}$
Intersection Density	$ID_{disagg} = \frac{Total\ Number\ of\ Intersections\ in\ the\ category}{Dividings\ Total\ Area\ in\ the\ category\cdot 1E-6}$

References

- The relevance of street patterns and public space in urban areas, Nairobi: UN-Habitat, 2013.
 - http://unhabitat.org/the-relevance-of-street-patterns-and-public-space-in-urban-areas/
- Streets as Public Spaces and Drivers of Urban Prosperity, Nairobi: UN-Habitat, 2013.
 - http://unhabitat.org/books/streets-as-public-spaces-and-drivers-of-urban-prosperity/
- Angel et al., Atlas of Urban Expansion, Lincoln Institute of Land Policy, 2012.
 http://www.lincolninst.edu/publications/books/atlas-urban-expansion
- Angel et al., Atlas of Urban Expansion—2016 Edition, Volume 2: Block and Roads, New York: New York University, Nairobi: UN-Habitat, and Cambridge, MA: Lincoln Institute of Land Policy, 2016.
 - http://www.atlasofurbanexpansion.org